Polarization-resolved second-harmonic generation in tendon upon mechanical stretching

肌腱在机械拉伸过程中产生偏振分辨的二次谐波

阅读:5
作者:Ivan Gusachenko, Viet Tran, Yannick Goulam Houssen, Jean-Marc Allain, Marie-Claire Schanne-Klein

Abstract

Collagen is a triple-helical protein that forms various macromolecular organizations in tissues and is responsible for the biomechanical and physical properties of most organs. Second-harmonic generation (SHG) microscopy is a valuable imaging technique to probe collagen fibrillar organization. In this article, we use a multiscale nonlinear optical formalism to bring theoretical evidence that anisotropy of polarization-resolved SHG mostly reflects the micrometer-scale disorder in the collagen fibril distribution. Our theoretical expectations are confirmed by experimental results in rat-tail tendon. To that end, we report what to our knowledge is the first experimental implementation of polarization-resolved SHG microscopy combined with mechanical assays, to simultaneously monitor the biomechanical response of rat-tail tendon at macroscopic scale and the rearrangement of collagen fibrils in this tissue at microscopic scale. These experiments bring direct evidence that tendon stretching corresponds to straightening and aligning of collagen fibrils within the fascicle. We observe a decrease in the SHG anisotropy parameter when the tendon is stretched in a physiological range, in agreement with our numerical simulations. Moreover, these experiments provide a unique measurement of the nonlinear optical response of aligned fibrils. Our data show an excellent agreement with recently published theoretical calculations of the collagen triple helix hyperpolarizability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。