Processing and interpretation of core-electron XPS spectra of complex plasma-treated polyethylene-based surfaces using a theoretical peak model

使用理论峰模型处理和解释复杂等离子体处理的聚乙烯基表面的核心电子 XPS 光谱

阅读:5
作者:Marc Bruggeman, Mischa Zelzer, Hanshan Dong, Artemis Stamboulis

Abstract

Interpretation of X-ray photoelectron spectroscopy (XPS) spectra of complex material surfaces, such as those obtained after surface plasma treatment of polymers, is confined by the available references. The limited understanding of the chemical surface composition may impact the ability to determine suitable coupling chemistries used for surface decoration or assess surface-related properties like biocompatibility. In this work, XPS is used to investigate the chemical composition of various ultra-high-molecular-weight polyethylene (UHMWPE) surfaces. UHMWPE doped with α-tocopherol or functionalised by active screen plasma nitriding (ASPN) was investigated as a model system. Subsequently, a more complex combined system obtained by ASPN treatment of α-tocopherol doped UHMWPE was investigated. Through ab initio orbital calculations and by employing Koopmans' theorem, the core-electron binding energies (CEBEs) were evaluated for a substantial number of possible chemical functionalities positioned on PE-based model structures. The calculated ΔCEBEs showed to be in reasonable agreement with experimental reference data. The calculated ΔCEBEs were used to develop a material-specific peak model suitable for the interpretation of merged high-resolution C 1 s, N 1 s and O 1 s XPS spectra of PE-based materials. In contrast to conventional peak fitting, the presented approach allowed the distinction of functionality positioning (i.e. centred or end-chain) and evaluation of the long-range effects of the chemical functionalities on the PE carbon backbone. Altogether, a more detailed interpretation of the modified UHMWPE surfaces was achieved whilst reducing the need for manual input and personal bias introduced by the spectral analyst.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。