CB2R induces a protective response for epileptic seizure via the PI3K 110α-AKT signaling pathway

CB2R 通过 PI3K 110α-AKT 信号通路诱导对癫痫发作的保护性反应

阅读:5
作者:Qingjun Cao, Xueyan Liu, Fenghua Yang, Hua Wang

Abstract

Epilepsy is a chronic brain disease caused by abnormal discharging in the brain, which induces momentary brain dysfunction. Cannabinoid 2 receptor (CB2R) is expressed in central nervous system (CNS) and serves an important role in the pathogenesis of CNS diseases. The aim of the present study was to explore the effects of CB2R activation on phosphoinositide 3-kinase (PI3K) 110α-protein kinase B (AKT) signaling in an astrocyte model of epilepsy. Rat CTX TNA2 astrocytes were treated with Mg free solution to establish a cell model of epilepsy and were subsequently treated with a CB2R agonist (JWH133) and antagonist (AM630). Cell cycle analysis revealed that treatment using Mg free solution inhibited cell cycle transition. JWH133 facilitated cell cycle progression while AM630 inhibited it. Western blotting results demonstrated that treatment with Mg free solution downregulated the expression of cyclin D1, cyclin E, phosphorylated Retinoblastoma (p-Rb), B-cell lymphoma 2 (Bcl-2), PI3K 110α, p-AKT and p-mammalian target of rapamycin, whereas JWH133 treatment upregulated these proteins. AM630 ameliorated the JWH133-induced upregulation of these proteins. To confirm the involvement of AKT signaling, the AKT inhibitor wortmannin was used. The results revealed that wortmannin inhibited the effect of JWH133 on p-AKT, cyclin D1, p-Rb and Bcl-2 expression. In addition, the effects of JWH133 and AM630 on PI3K 110α-AKT signaling were verified using a rat model of epilepsy. In conclusion, the present study demonstrates that CB2R activation induces astrocyte proliferation and survival via activation of the PI3K 110α-AKT signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。