Cytotoxic effect of Efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation

依法韦仑对 BxPC-3 胰腺癌细胞的细胞毒性作用基于氧化应激,并与电离辐射具有协同作用

阅读:5
作者:Markus Hecht, Thomas Harrer, Verena Körber, Eric O Sarpong, Fabian Moser, Nora Fiebig, Manuela Schwegler, Michael Stürzl, Rainer Fietkau, Luitpold V Distel

Abstract

The non-nucleoside reverse transcriptase inhibitor (NNRTI) Efavirenz is frequently used in human immunodeficiency virus treatment, but also efficient against cancer in mouse models. Its radiosensitizing effect makes it a promising drug for combination with radiotherapy. The efficacy of Efavirenz combined with irradiation was assessed with immunostaining of DNA-damage markers and colony formation assays in BxPC-3 pancreatic cancer cells. Gene expression and protein phosphorylation of the Efavirenz-sensitive BxPC-3 cells was compared to the resistant primary fibroblasts SBL-5. Oxidative stress, mitochondrial damage and cell death were studied with live-cell microscopy and flow cytometry. Combined Efavirenz and radiation significantly increased the number of γH2AX and phospho-ataxia telangiectasia mutated foci. Efavirenz and ionizing radiation had a synergistic effect using the clonogenic survival assay. Efavirenz selectively induced cell death in the BxPC-3 cells. The differing gene expression of cell cycle and apoptotic regulator genes in both cell cultures after Efavirenz treatment match with this selective effect against cancer cells. In the phosphoprotein array, an early phosphorylation of extracellular signal-related kinase 1/2 and p38 mitogen-activated protein kinase was notably detected in the cancer cells. The phosphorylation of AKT decreased in the cancer cells whereas it increased in the fibroblasts. Oxidative stress and mitochondrial membrane depolarization appeared in the cancer cells immediately after Efavirenz treatment, but not in the fibroblasts. Efavirenz has an anti-cancer effect against pancreatic cancer mainly by the induction of oxidative stress. The antitumor potential of Efavirenz and radiotherapy are additive.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。