Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na+/Ca2+ Exchanger

黄芪多糖通过调节线粒体 Na+/Ca2+ 交换器减轻高糖诱导的大鼠主动脉内皮细胞衰老和炎症小体活化

阅读:5
作者:Xin-Yu Miao #, Xiao-Xiao Zhu #, Zhao-Yan Gu, Bo Fu, Shao-Yuan Cui, Yuan Zu, Ling-Jun Rong, Fan Hu, Xiang-Mei Chen, Yan-Ping Gong, Chun-Lin Li

Abstract

Vascular endothelial cells play a vital role in atherosclerotic changes and the progression of cardiovascular disease in older adults. Previous studies have indicated that Astragalus polysaccharides (APS), a main active component of the traditional Chinese medicine Astragalus, protect mitochondria and exert an antiaging effect in the mouse liver and brain. However, the effect of APS on rat aortic endothelial cell (RAEC) senescence and its underlying mechanism have not been investigated. In this study, we extracted RAECs from 2-month-old male Wistar rats by the tissue explant method and found that APS ameliorated the high-glucose-induced increase in the frequency of SA-β-Gal positivity and the levels of the senescence-related proteins p16, p21, and p53. APS increased the tube formation capacity of RAECs under high-glucose conditions. Moreover, APS enhanced the expression of the mitochondrial Na+/Ca2+ exchanger NCLX, and knockdown of NCLX by small interfering RNA (siRNA) transfection suppressed the antiaging effect of APS under high-glucose conditions. Additionally, APS ameliorated RAEC mitochondrial dysfunction, including increasing ATP production, cytochrome C oxidase activity and the oxygen consumption rate (OCR), and inhibited high-glucose-induced NLRP3 inflammasome activation and IL-1β release, which were reversed by siNCLX. These results indicate that APS reduces high-glucose-induced inflammasome activation and ameliorates mitochondrial dysfunction and senescence in RAECs by modulating NCLX. Additionally, APS enhanced the levels of autophagy-related proteins (LC3B-II/I, Atg7) and increased the quantity of autophagic vacuoles under high-glucose conditions. Therefore, these data demonstrate that APS may reduce vascular endothelial cell inflammation and senescence through NCLX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。