The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells

P2Y(14)和其他P2Y受体在人类LAD2肥大细胞脱颗粒中的作用

阅读:4
作者:Zhan-Guo Gao, Qiang Wei, M P Suresh Jayasekara, Kenneth A Jacobson

Abstract

Mast cell degranulation affects many conditions, e.g., asthma and urticaria. We explored the potential role of the P2Y(14) receptor (P2Y(14)R) and other P2Y subtypes in degranulation of human LAD2 mast cells. All eight P2YRs were expressed at variable levels in LAD2 cells (quantitative real-time RT-PCR). Gene expression levels of ADP receptors, P2Y(1)R, P2Y(12)R, and P2Y(13)R, were similar, and P2Y(11)R and P2Y(4)R were highly expressed at 5.8- and 3.8-fold of P2Y(1)R, respectively. Least expressed P2Y(2)R was 40-fold lower than P2Y(1)R, and P2Y(6)R and P2Y(14)R were ≤50 % of P2Y(1)R. None of the native P2YR agonists alone induced β-hexosaminidase (β-Hex) release, but some nucleotides significantly enhanced β-Hex release induced by C3a or antigen, with a rank efficacy order of ATP > UDPG ≥ ADP >> UDP, UTP. Although P2Y(11)R and P2Y(4)R are highly expressed, they did not seem to play a major role in degranulation as neither P2Y(4)R agonist UTP nor P2Y(11)R agonists ATPγS and NF546 had a substantial effect. P2Y(1)R-selective agonist MRS2365 enhanced degranulation, but ~1,000-fold weaker compared to its P2Y(1)R potency, and the effect of P2Y(6)R agonist 3-phenacyl-UDP was negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. Both UDPG and a synthetic agonist of the P2Y(14)R, MRS2690, enhanced C3a-induced β-Hex release, which was inhibited by a P2Y(14)R antagonist, specific P2Y(14)R siRNA and pertussis toxin, suggesting a role of P2Y(14)R activation in promoting human mast cell degranulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。