Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality

使用非哺乳动物来源的胶原蛋白对 PVDF 进行表面改性,以增强内皮细胞功能

阅读:5
作者:Jun Kit Wang, Gordon Minru Xiong, Baiwen Luo, Chee Chong Choo, Shaojun Yuan, Nguan Soon Tan, Cleo Choong

Abstract

Although polyvinylidene fluoride (PVDF) is non-toxic and stable in vivo, its hydrophobic surface has limited its bio-applications due to poor cell-material interaction and thrombus formation when used in blood contacting devices. In this study, surface modification of PVDF using naturally derived non-mammalian collagen was accomplished via direct surface-initiated atom transfer radical polymerisation (SI-ATRP) to enhance its cytocompatibility and hemocompatibility. Results showed that Type I collagen was successfully extracted from fish scales and bullfrog skin. The covalent immobilisation of fish scale-derived collagen (FSCOL) and bullfrog skin-derived collagen (BFCOL) onto the PVDF surface improves the attachment and proliferation of human umbilical vein endothelial cells (HUVECs). Furthermore, both FSCOL and BFCOL had comparable anti-thrombogenic profiles to that of commercially available bovine collagen (BVCOL). Also, cell surface expression of the leukocyte adhesion molecule was lower on HUVECs cultured on non-mammalian collagen surfaces than on BVCOL, which is an indication of lower pro-inflammatory response. Overall, results from this study demonstrated that non-mammalian sources of collagen could be used to confer bioactivity to PVDF, with comparable cell-material interactions and hemocompatibility to BVCOL. Additionally, higher expression levels of Type IV collagen in HUVECs cultured on FSCOL and BFCOL were observed as compared to BVCOL, which is an indication that the non-mammalian sources of collagen led to a better pro-angiogenic properties, thus making them suitable for blood contacting applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。