Potential predictive value of serum targeted metabolites and concurrently mutated genes for EGFR-TKI therapeutic efficacy in lung adenocarcinoma patients with EGFR sensitizing mutations

EGFR 致敏突变肺腺癌患者血清靶代谢物及同时突变基因对 EGFR-TKI 治疗疗效的潜在预测价值

阅读:4
作者:Xiaohong Han, Rongrong Luo, Lin Wang, Lei Zhang, Tao Wang, Yan Zhao, Shanshan Xiao, Nan Qiao, Chi Xu, Lieming Ding, Zhishang Zhang, Yuankai Shi

Abstract

There is a discrepancy in the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment for advanced lung adenocarcinoma (LUAD) patients with EGFR sensitizing mutations (mEGFR). Molecular markers other than mEGFR remain to be investigated to better predict EGFR-TKI efficacy. Here, 49 LUAD patients with mEGFR (19 deletions or 21 L858R mutations) who received the first-generation EGFR-TKI icotinib therapy were included and stratified into 25 good-responders with a progression-free survival (PFS) longer than 11 months and 24 poor-responders with a PFS shorter than 11 months. We conducted targeted metabolomic detection and next-generation sequencing on serum and tissue samples, respectively. Subsequently, two metabolomic profiling-based discriminant models were constructed for icotinib efficacy prediction, 10 metabolites overlapped in both models ensured high credibility for distinguishing good- and poor-responders. Seven of the 10 metabolites displayed significant differences between the two groups, which belong to lipids including ceramides (Cers), lysophosphatidylcholines (LPCs), lysophosphatidylethanolamines (LPEs), sphingomyelins (SMs), and free fatty acids (FAs). Briefly, LPC 16:1, LPC 22:5-1, and LPE 18:2 decreased in poor-responders, while Cer 36:1-3, Cer 38:1-3, SM 36:1-2 and SM 42:2 increased in poor-responders. In parallel, we identified 6 co-mutated genes (ARID1A, ARID1B, BCR, FANCD2, PTCH1, and RBM10) which were significantly correlated with a shorter PFS. Additionally, 4 efficacy-related metabolites (Cer 36:1-3, Cer 38:1-3, SM 36:1-2, and LPC 16:1) showed significant differences between the mutant and wild-type of 4 efficacy-related genes (ARID1A, ARID1B, BCR, and RBM10). SM 36:1-2 elevated while LPC 16:1 decreased in ARID1A, BCR, and RBM10 mutant groups compared to the wild-type groups. Cer 36:1-3 increased in the ARID1A and BCR mutant groups, and Cer 38:1-3 only rose in the ARID1A mutant group. Furthermore, we observed a causal-mediator-network-based interrelation between the 4 concurrently mutated genes and the 4 metabolites related metabolic genes in glycerophospholipid metabolism and sphingolipid metabolism pathways. This study demonstrated that lipids metabolism and concurrently mutated genes with mEGFR were associated with the icotinib efficacy, which provides novel perspectives in classifying clinical responses of mEGFR LUAD patients and reveals the potential of non-invasive pretreatment serum metabolites in predicting EGFR-TKI efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。