Effect of adenovirus-mediated overexpression of PTEN on brain oxidative damage and neuroinflammation in a rat kindling model of epilepsy

腺病毒介导的PTEN过度表达对大鼠癫痫点燃模型脑氧化损伤和神经炎症的影响

阅读:4
作者:Zhi-Sheng Wu, Wen-Li Huang, Shu-Jie Gong

Background

Epilepsy is a chronic and severe neurological disorder. Phosphatase and tensin homolog deleted on chromosome ten (PTEN)-deficient mice exhibit learning and memory deficits and spontaneous epilepsy. The

Conclusion

Our study demonstrated that brain oxidative damage and neuroinflammation in SE rats were ameliorated by intracerebroventricular injection of Ad-PTEN.

Methods

An adenovirus (Ad)-PTEN vector was constructed, and status epilepticus (SE) was induced in 41 model rats using lithium chloride-pilocarpine. Thirty-six SE rats were then allocated into the Ad-PTEN, Ad-LacZ, and SE groups, those were administered intracerebroventricular injections of Ad-PTEN, Ad-enhanced green fluorescent protein, and phosphate buffer saline, respectively. The normal group was comprised of healthy Sprague-Dawley rats. Nissl staining was conducted to evaluate neuronal damage, and immunohistochemistry was conducted to observe the morphology of cells in the hippocampal CA1 region and the distribution of ionized calcium-binding adaptor molecule 1 (Iba1) and ED1 (rat homologue of human CD68). Levels of apoptosis-related proteins, inflammatory-related factors, and oxidative stress-related markers (reactive oxygen species [ROS], glutathione [GSH], superoxide dismutase [SOD], and malondialdehyde [MDA]) were measured. Comparisons between multiple groups were conducted using one-way analysis of variance (ANOVA), and pairwise comparisons after ANOVA were conducted using the Tukey multiple comparisons test.

Results

After SE induction, PTEN expression in the rat brain exhibited a four-fold decrease (P = 0.000) and the expression of both Iba1 and ED1 increased. Furthermore, significant neuronal loss, oxidative damage, and neuroinflammation were observed in the SE rat brain. After intracerebroventricular injection of Ad-PTEN, PTEN expression exhibited a three-fold increase (P = 0.003), and the expression of both Iba1 and ED1 decreased. Additionally, neurons were restored and neuronal apoptosis was inhibited. Furthermore, ROS and MDA levels decreased, GSH level and SOD activity increased, and neuroinflammation was reduced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。