Cezanne contributes to cancer progression by playing a key role in the deubiquitination of IGF-1R

Cezanne 在 IGF-1R 去泛素化过程中发挥关键作用,从而促进癌症进展

阅读:5
作者:Xiaowei Chen, Zhaofei Pang, Yu Wang, Linhai Zhu, Jichang Liu, Jiajun Du

Background

Degradation of insulin-like growth factor 1 receptor (IGF-1R) is mediated by internalization and endocytosis, for which ubiquitin-proteasome pathways play as a regulatory system. Cezanne expression is positively associated with IGF-1R expression. High Cezanne expression correlates with poor patient survival in NSCLC, yet the underlying mechanisms are not well defined.

Conclusion

Mechanistically, Cezanne directly targets IGF-1R by deubiquitination and stabilization. This leads to AKT activation, which bolsters tumor cell growth in vitro and in vivo. These findings reveal Cezanne as a regulator of tumor cell proliferation via IGF-1R signaling pathway and a potential target for NSCLC therapy.

Methods

Co-Immunoprecipitation assay was performed to investigate the interactions between Cezanne and IGF-1R. A xenograft model was established to assess the efficacy of Cezanne on cancer progression in vivo. Cezanne overexpressing and Cezanne knockdown NSCLC cell lines were generated using lentiviral vectors. The effects of Cezanne and IGF-1R on cell proliferation of non-small-cell lung cancer were evaluated via Sulforhodamine B assay and colony formation assays.

Results

Here, through co-Immunoprecipitation assay, we find Cezanne interacts with IGF-1R in tumor cells. Depletion of Cezanne promotes the ubiquitination and degradation of IGF-1R. Congruently, Cezanne regulates the protein level of IGF-1R and downstream AKT signaling pathway. Cezanne promotes proliferation of tumor cells in vitro and in vivo. In line with the change of IGF-1R downstream signaling pathway, IGF-1-induced growth signals recover cell proliferation of tumor cells with Cezanne knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。