The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma

新型强效 TEAD 抑制剂 K-975 可抑制 YAP1/TAZ-TEAD 蛋白质-蛋白质相互作用,对恶性胸膜间皮瘤发挥抗肿瘤作用

阅读:7
作者:Ayumi Kaneda, Toshihiro Seike, Tomohiro Danjo, Takahiro Nakajima, Nobumasa Otsubo, Daisuke Yamaguchi, Yoshiro Tsuji, Kaori Hamaguchi, Mai Yasunaga, Yoichi Nishiya, Michihiko Suzuki, Jun-Ichi Saito, Rie Yatsunami, Satoshi Nakamura, Yoshitaka Sekido, Kiyotoshi Mori

Abstract

The Hippo signaling pathway regulates cell fate and organ development. In the Hippo pathway, transcriptional enhanced associate domain (TEAD) which is a transcription factor is activated by forming a complex with yes-associated protein 1 (YAP1) or transcriptional coactivator with PDZ-binding motif (TAZ, also called WWTR1). Hyper-activation of YAP1/TAZ, leading to the activation of TEAD, has been reported in many cancers, including malignant pleural mesothelioma (MPM). Therefore, the YAP1/TAZ-TEAD complex is considered a novel therapeutic target for cancer treatment. However, few reports have described YAP1/TAZ-TEAD inhibitors, and their efficacy and selectivity are poor. In this study, we performed a high-throughput screening of a neurofibromin 2 (NF2)-deficient MPM cell line and a large tumor suppressor kinase 1/2 (LATS1/2)-deficient non-small-cell lung cancer cell line using a transcriptional reporter assay. After screening and optimization, K-975 was successfully identified as a potent inhibitor of YAP1/TAZ-TEAD signaling. X-ray crystallography revealed that K-975 was covalently bound to an internal cysteine residue located in the palmitate-binding pocket of TEAD. K-975 had a strong inhibitory effect against protein-protein interactions between YAP1/TAZ and TEAD in cell-free and cell-based assays. Furthermore, K-975 potently inhibited the proliferation of NF2-non-expressing MPM cell lines compared with NF2-expressing MPM cell lines. K-975 also suppressed tumor growth and provided significant survival benefit in MPM xenograft models. These findings indicate that K-975 is a strong and selective TEAD inhibitor with the potential to become an effective drug candidate for MPM therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。