Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering

用于心脏瓣膜组织工程的激光微加工聚(甘油癸二酸酯)支架

阅读:7
作者:Nafiseh Masoumi, Aurélie Jean, Jeffrey T Zugates, Katherine L Johnson, George C Engelmayr Jr

Abstract

Microfabricated poly(glycerol sebacate) (PGS) scaffolds may be applicable to tissue engineering heart valve leaflets by virtue of their controllable microstructure, stiffness, and elasticity. In this study, PGS scaffolds were computationally designed and microfabricated by laser ablation to match the anisotropy and peak tangent moduli of native bovine aortic heart valve leaflets. Finite element simulations predicted PGS curing conditions, scaffold pore shape, and strut width capable of matching the scaffold effective stiffnesses to the leaflet peak tangent moduli. On the basis of simulation predicted effective stiffnesses of 1.041 and 0.208 MPa for the scaffold preferred (PD) and orthogonal, cross-preferred (XD) material directions, scaffolds with diamond-shaped pores were microfabricated by laser ablation of PGS cured 12 h at 160°C. Effective stiffnesses measured for the scaffold PD (0.83 ± 0.13 MPa) and XD (0.21 ± 0.03 MPa) were similar to both predicted values and peak tangent moduli measured for bovine aortic valve leaflets in the circumferential (1.00 ± 0.16 MPa) and radial (0.26 ± 0.03 MPa) directions. Scaffolds cultivated with fibroblasts for 3 weeks accumulated collagen (736 ± 193 μg/g wet weight) and DNA (17 ± 4 μg/g wet weight). This study provides a basis for the computational design of biomimetic microfabricated PGS scaffolds for tissue-engineered heart valves.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。