Protein Scaffold-Based Multimerization of Soluble ACE2 Efficiently Blocks SARS-CoV-2 Infection In Vitro and In Vivo

基于蛋白质支架的可溶性 ACE2 多聚化可在体内和体外有效阻断 SARS-CoV-2 感染

阅读:5
作者:Alisan Kayabolen, Ugur Akcan, Doğancan Özturan, Hivda Ulbegi-Polat, Gizem Nur Sahin, Nareg Pinarbasi-Degirmenci, Canan Bayraktar, Gizem Soyler, Ehsan Sarayloo, Elif Nurtop, Berna Ozer, Gulen Guney-Esken, Tayfun Barlas, Ismail Selim Yildirim, Ozlem Dogan, Sercin Karahuseyinoglu, Nathan A Lack, Mehmet

Abstract

Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。