Er:YAG laser suppresses pro-inflammatory cytokines expression and inflammasome in human periodontal ligament fibroblasts with Porphyromonas gingivalis-lipopolysaccharide stimulation

Er:YAG 激光抑制牙龈卟啉单胞菌-脂多糖刺激的人牙周膜成纤维细胞中的促炎细胞因子表达和炎症小体

阅读:10
作者:Min Yee Ng, Taichen Lin, Szu-Han Chen, Yi-Wen Liao, Chia-Ming Liu, Cheng-Chia Yu

Conclusion

To our knowledge, this is the first study to look into the laser's implication on the NLRP3 inflammasome in periodontitis models. Our study reveals a crucial role of Er:YAG laser in ameliorating periodontitis in-vitro through the modulation of IL-6, IL-8, MCP-1 and the NLRP3 inflammasome and highlights that the control of the NLRP3 inflammasome may become a potential approach for periodontitis.

Methods

Human periodontal ligament fibroblast (PDLFs) were first stimulated with lipopolysaccharides (LPS) from P. gingivalis (Pg-LPS) to simulate periodontitis. Cells were then irradiated with Er:YAG laser of ascending energy densities (3.6-6.3 J/cm2), followed by cell proliferation and wound healing assay. Next, the effects of Er:YAG laser on the expressions of IL-6, IL-8, MCP-1, NLRP3, and cleaved GSDMD were examined.

Purpose

Periodontitis is an inflammatory condition of the tooth-supporting structures triggered by the host's immune response towards the bacterial deposits around the teeth. It is well acknowledged that pro-inflammatory interleukin (IL)-6, IL-8, MCP-1 as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, are the key modulators in the activation of this response. Erbium-doped yttrium-aluminium-garnet (Er:YAG) laser, a solid-state crystal laser have been commonly used in the treatment of periodontal diseases. However, little is understood about the molecular mechanism of the Er:YAG laser, especially in targeting the host immune response brought on by periodontal pathogens. Hence, the current study focused on the protective effects of Er:YAG laser on periodontitis in-vitro in terms of pro-inflammatory cytokines, chemokines and NLRP3 inflammasome expressions. Materials and

Results

Pg-LPS was found to reduce cell's proliferation rate and wound healing ability in PDLFs and these were rescued by Er:YAG laser irradiation. In addition, LPS stimuli resulted in a marked upregulation in the secretion of IL-6, IL-8 and MCP-1 as well as the mRNA and protein expression of NLRP3 and cleaved-GSDMD protein whereas Er:YAG laser suppressed the elicited phenomena.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。