Canagliflozin Prevents Hyperglycemia-Associated Muscle Extracellular Matrix Accumulation and Improves the Adaptive Response to Aerobic Exercise

卡格列净可预防高血糖相关的肌肉细胞外基质积聚并改善对有氧运动的适应性反应

阅读:7
作者:Tara L MacDonald, Pattarawan Pattamaprapanont, Eileen M Cooney, Roberto C Nava, Joanna Mitri, Samar Hafida, Sarah J Lessard

Abstract

Chronic hyperglycemia is associated with low response to aerobic exercise training in rodent models and humans, including reduced aerobic exercise capacity and impaired oxidative remodeling in skeletal muscle. Here, we investigated whether glucose lowering with the sodium-glucose cotransporter 2 inhibitor (SGLT2i), canagliflozin (Cana; 30 mg/kg/day), could restore exercise training response in a model of hyperglycemia (low-dose streptozotocin [STZ]). Cana effectively prevented increased blood glucose in STZ-treated mice. After 6 weeks of voluntary wheel running, Cana-treated mice displayed improvements in aerobic exercise capacity, higher capillary density in striated muscle, and a more oxidative fiber-type in skeletal muscle. In contrast, these responses were blunted or absent in STZ-treated mice. Recent work implicates glucose-induced accumulation of skeletal muscle extracellular matrix (ECM) and hyperactivation of c-Jun N-terminal kinase (JNK)/SMAD2 mechanical signaling as potential mechanisms underlying poor exercise response. In line with this, muscle ECM accretion was prevented by Cana in STZ-treated mice. JNK/SMAD2 signaling with acute exercise was twofold higher in STZ compared with control but was normalized by Cana. In human participants, ECM accumulation was associated with increased JNK signaling, low VO2peak, and impaired metabolic health (oral glucose tolerance test-derived insulin sensitivity). These data demonstrate that hyperglycemia-associated impairments in exercise adaptation can be ameliorated by cotherapy with SGLT2i.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。