Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism

嗅觉 G 蛋白偶联受体自主感知胰岛素肽调节葡萄糖代谢

阅读:6
作者:Jie Cheng, Zhao Yang, Xiao-Yan Ge, Ming-Xin Gao, Ran Meng, Xin Xu, Yu-Qi Zhang, Rui-Zhe Li, Jing-Yu Lin, Zhao-Mei Tian, Jin Wang, Shang-Lei Ning, Yun-Fei Xu, Fan Yang, Jing-Kai Gu, Jin-Peng Sun, Xiao Yu

Abstract

Along with functionally intact insulin, diabetes-associated insulin peptides are secreted by β cells. By screening the expression and functional characterization of olfactory receptors (ORs) in pancreatic islets, we identified Olfr109 as the receptor that detects insulin peptides. The engagement of one insulin peptide, insB:9-23, with Olfr109 diminished insulin secretion through Gi-cAMP signaling and promoted islet-resident macrophage proliferation through a β cell-macrophage circuit and a β-arrestin-1-mediated CCL2 pathway, as evidenced by β-arrestin-1-/- mouse models. Systemic Olfr109 deficiency or deficiency induced by Pdx1-Cre+/-Olfr109fl/fl specifically alleviated intra-islet inflammatory responses and improved glucose homeostasis in Akita- and high-fat diet (HFD)-fed mice. We further determined the binding mode between insB:9-23 and Olfr109. A pepducin-based Olfr109 antagonist improved glucose homeostasis in diabetic and obese mouse models. Collectively, we found that pancreatic β cells use Olfr109 to autonomously detect self-secreted insulin peptides, and this detection arrests insulin secretion and crosstalks with macrophages to increase intra-islet inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。