Interference of P-REX2a may inhibit proliferation and reverse the resistance of SGC7901 cells to doxorubicin

干扰P-REX2a可能抑制SGC7901细胞增殖并逆转其对阿霉素的耐药性

阅读:5
作者:Yaowei Ai, Qiaohui Zhou, Ling Li, Zhihong Pan, Mingwen Guo, Jingbo Han

Abstract

Drug resistance inhibits the efficacy of doxorubicin in gastric cancer. Phosphatidylinositol 3,4,5-trisphosphate RAC exchanger 2a (P-REX2a) activates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by binding to and inactivating phosphatase and tensin homolog (PTEN), which functions as a tumor promoter in a number of types of cancer. However, there is no research concerning the association between P-REX2a expression and drug resistance in gastric cancer. In the present study, the expression of P-REX2a in clinical gastric cancer tissues was detected, and the mechanism of doxorubicin resistance in the gastric cancer cell line SGC7901 was investigated. Using reverse transcription-quantitative polymerase chain reaction and western blotting, it was demonstrated that the mRNA and protein expression of P-REX2a was increased in gastric cancer tissues. MTT assays were also used to determine proliferation, and proliferation was revealed to be reduced following transfection of P-REX2a small interfering (si)RNA. When the cells were treated with 0.3 µM doxorubicin for 24 h, the rate of apoptosis in the siRNA-transfected groups significantly increased and no marked changes in of PTEN and Akt expression were observed. By contrast, the activity of PTEN increased, and the expression of p-Akt (S473) decreased in the P-REX2a siRNA-transfected group compared with the control. The detection of PTEN enzymatic activity in the present study was based on phosphatidylinositol-3,4,5-trisphosphate. Therefore, it was concluded that P-REX2a may participate in the generation of resistance to doxorubicin in gastric cancer, and this may be associated with the upregulation of the PI3K/Akt signaling pathway via inactivation of PTEN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。