Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury

Maresin 1 促进神经再生并缓解神经损伤后的神经性疼痛

阅读:11
作者:Jinhuan Wei #, Wenfeng Su #, Yayu Zhao, Zhongya Wei, Yuchen Hua, Peng Xue, Xiang Zhu, Ying Chen, Gang Chen

Background

Peripheral nerve injury (PNI) is a public health concern that

Conclusions

Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic pain, suggesting that MaR1 is a promising therapeutic agent for PNI.

Methods

PNI models were constructed with 8-week-old adult male ICR mice and treated with NGF, MaR1 or saline by local application, intrathecal injection or intraplantar injection. Behavioral analysis and muscle atrophy test were assessed after treatment. Immunofluorescence assay was performed to examine the expression of ATF-3, GFAP, IBA1, and NF200. The expression transcript levels of inflammatory factors IL1β, IL-6, and TNF-α were detected by quantitative real-time RT-PCR. AKT, ERK, mTOR, PI3K, phosphorylated AKT, phosphorylated ERK, phosphorylated mTOR, and phosphorylated PI3K levels were examined by western blot analysis. Whole-cell patch-clamp recordings were executed to detect transient receptor potential vanilloid 1 (TRPV1) currents.

Results

MaR1 demonstrated a more robust ability to promote sensory and motor function recovery in mice after sciatic nerve crush injury than NGF. Immunohistochemistry analyses showed that the administration of MaR1 to mice with nerve crush injury reduced the number of damaged DRG neurons, promoted injured nerve regeneration and inhibited gastrocnemius muscle atrophy. Western blot analysis of ND7/23 cells cultured with MaR1 or DRG neurons collected from MaR1 treated mice revealed that MaR1 regulated neurite outgrowth through the PI3K-AKT-mTOR signaling pathway. Moreover, MaR1 dose-dependently attenuated the mechanical allodynia and thermal hyperalgesia induced by nerve injury. Consistent with the analgesic effect, MaR1 inhibited capsaicin-elicited TRPV1 currents, repressed the nerve injury-induced activation of spinal microglia and astrocytes and reduced the production of proinflammatory cytokines in the spinal cord dorsal horn in PNI mice. Conclusions: Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic pain, suggesting that MaR1 is a promising therapeutic agent for PNI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。