miR‑142‑3p targets AC9 to regulate sciatic nerve injury‑induced neuropathic pain by regulating the cAMP/AMPK signalling pathway

miR-142-3p 靶向 AC9,通过调节 cAMP/AMPK 信号通路来调节坐骨神经损伤引起的神经性疼痛

阅读:7
作者:Xiao Li, Shoupeng Wang, Xiaoli Yang, Hongjun Chu

Abstract

The aim of the present study was to investigate the effects of microRNA (miR)‑142‑3p on neuropathic pain caused by sciatic nerve injury in chronic compression injury (CCI) rats, and further investigate its mechanism. Rat experiments were divided into four parts in the study. In the first part, the rats were divided into the Sham and CCI groups. The expression of miR‑142‑3p, AC9 and cAMP were detected. In the second part, the rats were divided into the Sham, CCI, miR‑142‑3p mimic, mimic‑negative control (NC), miR‑142‑3p small interfering RNA (siRNA) and siRNA‑NC groups. The expression of cAMP and the levels of AMPK pathway‑related proteins were detected. In the third part, the rats were randomly divided into Sham, CCI, AC9 mimic, mi‑NC, AC9 siRNA and si‑NC groups. Double luciferase reporter assay was used to analyse the targeting relationship between miR‑142‑3p and AC9. In the fourth part, the rats were divided into the Sham, CCI, miR‑142‑3p siRNA, AC9 mimic, miR‑142‑3p siRNA + AC9 siRNA, cAMP activator (Forskolin) and miR‑142‑3p siRNA + cAMP inhibitor groups. The expression of miR‑142‑3p was significantly increased while AC9 and cAMP expression significantly decreased in CCI rats. However, AC9 overexpression significantly increased the levels of cAMP protein. Luciferase reporter assay also proved that AC9 is the target gene of miR‑142‑3p. Moreover, miR‑142‑3p silencing was found to reduce neuropathic pain in CCI rats by upregulating the expression of AC9. It was also found that cAMP activation can relieve neuropathic pain and promote the expression of AMPK‑related proteins in CCI rats. Silencing miR‑142‑3p can target AC9 to reduce the expression of inflammatory factors and neuropathic pain in CCI rats by increasing the expression of cAMP/AMPK pathway‑related proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。