RTA-408 Protects Kidney from Ischemia-Reperfusion Injury in Mice via Activating Nrf2 and Downstream GSH Biosynthesis Gene

RTA-408 通过激活 Nrf2 和下游 GSH 生物合成基因保护小鼠肾脏免受缺血再灌注损伤

阅读:5
作者:Peng Han, Zhiqiang Qin, Jingyuan Tang, Zhen Xu, Ran Li, Xuping Jiang, Chengdi Yang, Qianwei Xing, Xiaokang Qi, Min Tang, Jiexiu Zhang, Baixin Shen, Wei Wang, Chao Qin, Wei Zhang

Abstract

Acute kidney injury (AKI) induced by ischemia-reperfusion is a critical conundrum in many clinical settings. Here, this study aimed to determine whether and how RTA-408, a novel oleanane triterpenoid, could confer protection against renal ischemia-reperfusion injury (IRI) in male mice. Mice treated with RTA-408 undergoing unilateral ischemia followed by contralateral nephrectomy had improved renal function and histological outcome, as well as decreased apoptosis, ROS production, and oxidative injury marker compared with vehicle-treated mice. Also, we had found that RTA-408 could strengthen the total antioxidant capacity by increasing Nrf2 nuclear translocation and subsequently increased Nrf2 downstream GSH-related antioxidant gene expression and activity. In vitro study demonstrated that GSH biosynthesis enzyme GCLc could be an important target of RTA-408. Furthermore, Nrf2-deficient mice treated with RTA-408 had no significant improvement in renal function, histology, ROS production, and GSH-related gene expression. Thus, by upregulating Nrf2 and its downstream antioxidant genes, RTA-408 presents a novel and potential approach to renal IRI prevention and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。