Probabilistic patterns of interaction: the effects of link-strength variability on food web structure

相互作用的概率模式:链接强度变化对食物网结构的影响

阅读:4
作者:Justin D Yeakel, Paulo R Guimarães Jr, Mark Novak, Kena Fox-Dobbs, Paul L Koch

Abstract

Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks (two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。