Mouse model of PRSS1 p.R122H-related hereditary pancreatitis highlights context-dependent effect of autolysis-site mutation

PRSS1 p.R122H 相关遗传性胰腺炎小鼠模型凸显自溶位点突变的环境依赖性影响

阅读:6
作者:Zsanett Jancsó, Nataly C Morales Granda, Alexandra Demcsák, Miklós Sahin-Tóth

Abstract

Mutation p.R122H in human cationic trypsinogen (PRSS1) is the most frequently identified cause of hereditary pancreatitis. The mutation blocks protective degradation of trypsinogen by chymotrypsin C (CTRC), which involves an obligatory trypsin-mediated cleavage at Arg122. Previously, we found that C57BL/6N mice are naturally deficient in CTRC, and trypsinogen degradation is catalyzed by chymotrypsin B1 (CTRB1). Here, we used biochemical experiments to demonstrate that the cognate p.R123H mutation in mouse cationic trypsinogen (isoform T7) only partially prevented CTRB1-mediated degradation. We generated a novel C57BL/6N mouse strain harboring the p.R123H mutation in the native T7 trypsinogen locus. T7R123H mice developed no spontaneous pancreatitis, and severity parameters of cerulein-induced pancreatitis trended only slightly higher than those of C57BL/6N mice. However, when treated with cerulein for 2 days, more edema and higher trypsin activity was seen in the pancreas of T7R123H mice compared to C57BL/6N controls. Furthermore, about 40% of T7R123H mice progressed to atrophic pancreatitis in 3 days, whereas C57BL/6N animals showed full histological recovery. Taken together, the observations indicate that mutation p.R123H inefficiently blocks chymotrypsin-mediated degradation of mouse cationic trypsinogen, and modestly increases cerulein-induced intrapancreatic trypsin activity and pancreatitis severity. The findings support the notion that the pathogenic effect of the PRSS1 p.R122H mutation in hereditary pancreatitis is dependent on its ability to defuse chymotrypsin-dependent defenses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。