A disintegrin and metalloproteinase 17 (ADAM17) and epidermal growth factor receptor (EGFR) signaling drive the epithelial response to Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1)

解整合素和金属蛋白酶 17 (ADAM17) 和表皮生长因子受体 (EGFR) 信号驱动上皮对金黄色葡萄球菌中毒性休克综合征毒素 1 (TSST-1) 的反应

阅读:5
作者:Laura M Breshears, Patrick M Schlievert, Marnie L Peterson

Abstract

Staphylococcal superantigens (SAgs), such as toxic shock syndrome toxin-1 (TSST-1), are the main cause of toxic shock syndrome (TSS). SAgs deregulate the host immune system after penetrating epithelial barriers such as the vaginal mucosa. In response to TSST-1, human vaginal epithelial cells (HVECs) produce cytokines and undergo morphological changes. The epithelial signaling mechanisms employed by SAgs remain largely unknown and are the focus of the work presented here. Analysis of published microarray data identified a network of genes up-regulated by HVECs in response to TSST-1 that includes the sheddase, a disintegrin and metalloproteinase 17 (ADAM17). Investigation revealed that the ADAM17 proteolytic targets, amphiregulin (AREG), transforming growth factor α (TGFα), syndecan-1 (SDC1), and tumor necrosis factor receptor 1 (TNFR1), are shed from HVECs in response to TSST-1. TAPI-1 (an ADAM inhibitor) completely abrogates all observed shedding and the production of the cytokine interleukin-8 (IL-8). Knock-down studies show that ADAM17, but not the closely related ADAM10, is required for AREG, TGFα, and TNFR1 shedding. Both ADAM10 and ADAM17 contribute to SDC1 shedding and IL-8 production by HVECs in response to TSST-1. EGFR signaling is critical for up-regulation of IL-8 at the transcriptional level in response to TSST-1 and is also necessary for AREG, TGFα, and TNFR1 shedding. A model is proposed describing the interactions of TSST-1, ADAMs, and the EGFR that lead to establishment of a proinflammatory positive feedback loop in epithelial cells and demonstrate a role for SAgs in the initial stages of disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。