CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells

CD39 抑制和 VISTA 阻断可通过靶向耗竭的 CD8+ T 细胞和免疫抑制性髓系细胞来克服放射治疗耐药性

阅读:5
作者:Yuhan Zhang, Junyi Hu, Kai Ji, Shengpeng Jiang, Yang Dong, Lin Sun, Jun Wang, Guangyuan Hu, Dawei Chen, Ke Chen, Zhen Tao

Abstract

Although radiotherapy (RT) has achieved great success in the treatment of non-small cell lung cancer (NSCLC), local relapses still occur and abscopal effects are rarely seen even when it is combined with immune checkpoint blockers (ICBs). Here, we characterize the dynamic changes of tumor-infiltrating immune cells after RT in a therapy-resistant murine tumor model using single-cell transcriptomes and T cell receptor sequencing. At the early stage, the innate and adaptive immune systems are activated. At the late stage, however, the tumor immune microenvironment (TIME) shifts into immunosuppressive properties. Our study reveals that inhibition of CD39 combined with RT preferentially decreases the percentage of exhausted CD8+ T cells. Moreover, we find that the combination of V-domain immunoglobulin suppressor of T cell activation (VISTA) blockade and RT synergistically reduces immunosuppressive myeloid cells. Clinically, high VISTA expression is associated with poor prognosis in patients with NSCLC. Altogether, our data provide deep insight into acquired resistance to RT from an immune perspective and present rational combination strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。