Autophagy-Dependent Increased ADAM10 Mature Protein Induced by TFEB Overexpression Is Mediated Through PPARα

TFEB 过表达诱导自噬依赖性 ADAM10 成熟蛋白增加,其机制由 PPARα 介导

阅读:6
作者:Hongjie Wang, Mohan Kumar Muthu Karuppan, Madhavan Nair, Madepalli K Lakshmana

Abstract

Nonamyloidogenic processing of amyloid precursor protein (APP) by augmenting ADAM10 is a promising therapeutic strategy for Alzheimer's disease (AD). Therefore identification of molecular pathways that regulate ADAM10 expression is crucial. Autophagy is strongly dysregulated in AD, and TFEB was recently shown to be a master regulator of autophagy-lysosome pathway (ALP). Here, we report that TFEB expression in HeLa cells increased ADAM10 mature form by 72% (p < 0.01, n = 4), while TFEB knockdown by CRISPR strategy reduced ADAM10 mature form by 36% (p < 0.05, n = 4). Autophagy inhibition by 3-methyladenine (3-MA), but not bafilomycin A1 (BAF1), reduced ADAM10 mature form by 49% (p < 0.05, n = 4) in the TFEB expressing HeLa cells. Autophagy activation by 3 h of starvation increased ADAM10 to 91% (p < 0.001, n = 6) relative to 51% (p < 0.01, n = 6) in the nutrient-fed cells. Further, siRNAs targeted against PPARα in HeLa cells decreased ADAM10 levels by 28% (p < 0.05, n = 6) relative to the cells treated with scrambled siRNAs. Further, incubation of EGFP-TFEB expressing HeLa cells with PPARα antagonist, but not PPARβ or PPARγ antagonists, prevented TFEB-induced increase in ADAM10 levels. Importantly, flag-TFEB expression in the brain also increased ADAM10 by 60% (p < 0.05, n = 3) in the cortical and 34% (p < 0.001, n = 3) in the hippocampal homogenates. ADAM10 activity also increased by 57% (p < 0.01, n = 3) in the HeLa cells. Finally, TFEB-induced ADAM10 potentiation led to increased secretion of sAPPα by 154% (p < 0.001, n = 3) in the cortex and 62% (p < 0.001, n = 3) in the hippocampus. Thus, TFEB expression enhances nonamyloidogenic processing of APP. In conclusion, TFEB expression induces ADAM10 in an autophagy-dependent manner through PPARα.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。