PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice

PRSS55 在精子的结构分化和能量代谢中起着重要作用,是小鼠雄性生育所必需的

阅读:6
作者:Feng Zhu, Wen Li, Xinli Zhou, Xu Chen, Meimei Zheng, Yiqiang Cui, Xiaofei Liu, Xuejiang Guo, Hui Zhu

Abstract

Orderly and stage-specifically expressed proteins are essential for spermatogenesis, and proteases play a key role in protein activation and function. The present study aimed to investigate serine protease 55 (PRSS55), which was reported to play a role in sperm-uterotubal junction (UTJ) migration and sperm-zona pellucida (ZP) binding. We found that PRSS55 was specifically expressed in testicular spermatids and epididymal spermatozoa. By constructing knockout mice targeting all transcripts of Prss55, we demonstrated that deletion of Prss55 resulted in a serious decline of male fertility, with significantly increased sperm malformation and decreased sperm motility. In Prss55-/- mice, increased structural abnormality, including deficient "9 + 2" microtubules, damaged peripheral dense fibre, and defective mitochondrial cristae, were found in sperm. In addition, sperm showed decreased expression of electron transfer chain molecules and lower ATP contents. These could be the potential causes of the astheno/teratozoospermia phenotype of the Prss55-/- mice, and provided new evidence for the previously reported impaired sperm-UTJ migration. Moreover, preliminary studies allowed us to speculate that PRSS55 might function by activating type II muscle myosin in the testis, which is involved in many processes requiring motivation and cytoskeleton translocation. Thus, PRSS55 is essential for the structural differentiation and energy metabolism of sperm, and might be a potential pathogenic factor in astheno/teratozoospermia. Our results provide an additional explanation for the male sterility of Prss55-/- mice, and further reveal the role of PRSS55.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。