Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons

Snapin 募集动力蛋白至 BDNF-TrkB 信号内体,进行逆行轴突运输,对皮质神经元树突生长至关重要

阅读:9
作者:Bing Zhou, Qian Cai, Yuxiang Xie, Zu-Hang Sheng

Abstract

Neurotrophin signaling is crucial for neuron growth. While the "signaling endosomes" hypothesis is one of the accepted models, the molecular machinery that drives retrograde axonal transport of TrkB signaling endosomes is largely unknown. In particular, mechanisms recruiting dynein to TrkB signaling endosomes have not been elucidated. Here, using snapin deficient mice and gene rescue experiments combined with compartmentalized cultures of live cortical neurons, we reveal that Snapin, as a dynein adaptor, mediates retrograde axonal transport of TrkB signaling endosomes. Such a role is essential for dendritic growth of cortical neurons. Deleting snapin or disrupting Snapin-dynein interaction abolishes TrkB retrograde transport, impairs BDNF-induced retrograde signaling from axonal terminals to the nucleus, and decreases dendritic growth. Such defects were rescued by reintroducing the snapin gene. Our study indicates that Snapin-dynein coupling is one of the primary mechanisms driving BDNF-TrkB retrograde transport, thus providing mechanistic insights into the regulation of neuronal growth and survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。