High glucose induces podocyte epithelial‑to‑mesenchymal transition by demethylation‑mediated enhancement of MMP9 expression

高葡萄糖通过去甲基化介导增强 MMP9 表达来诱导足细胞上皮-间质转化

阅读:11
作者:Li Ling, Libo Chen, Changning Zhang, Shuyan Gui, Haiyan Zhao, Zhengzhang Li

Abstract

Abnormal expression of matrix metalloproteinase 9 (MMP9) is correlated with podocyte epithelial-to---mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the mechanisms underlying this process are not well defined. Site‑specific demethylation may sustain high expression levels of target genes. In the present study, in order to investigate the association between DNA demethylation of MMP9 promoter and podocyte EMT in DN, human podocytes were cultured in high‑glucose (HG) medium and a rat model of DN was established by intraperitoneal injection of streptozotocin (STZ) to determine whether site‑specific demethylation of the MMP9 promoter was involved in regulating podocyte EMT in DN. The MTT assay was used to assess the effects of HG culture on the growth of podocytes, and the demethylation status of the MMP9 promoter was assessed by bisulfite sequencing polymerase chain reaction. mRNA and protein expression levels of MMP9, α‑smooth muscle actin (α‑SMA), podocalyxin and fibronectin‑1 in podocytes were assessed by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analyses. The results demonstrated that HG treatment up regulated the expression of MMP9, α‑SMA and fibronectin‑1, but down regulated the expression of podocalyxin in podocytes. The MMP9 promoter region was revealed to contain a variety of demethylated CpG sites, and HG treatment reduced the rate of MMP9 promotermethylation, which, in turn, enhanced its promoter activity. In summary, these data suggested that demethylation of the MMP9 promoter may serve an important role in podocyte EMT in DN. The demethylation status of the MMP9 promoter maybe used as an important prognostic marker of DN in clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。