Mitochondrial heat shock protein-90 modulates vascular smooth muscle cell survival and the vascular injury response in vivo

线粒体热休克蛋白-90 调节体内血管平滑肌细胞存活和血管损伤反应

阅读:6
作者:Andrew W Hoel, Peng Yu, Khanh P Nguyen, Xinxin Sui, Janet Plescia, Dario C Altieri, Michael S Conte

Abstract

The healing response of blood vessels from the vascular injury induced by therapeutic interventions is characterized by increased cellularity and tissue remodeling. Frequently, this leads to intimal hyperplasia and lumen narrowing, with significant clinical sequelae. Vascular smooth muscle cells are the primary cell type involved in this process, wherein they express a dedifferentiated phenotype that transiently resembles neoplastic transformation. Recent studies have highlighted the role of mitochondrial proteins, such as the molecular chaperone heat shock protein-90 (Hsp90), in promoting cancer cell survival, which leads to new candidate chemotherapeutic agents for neoplastic disease. Herein, we identify mitochondrial Hsp90 as a key modulator of the vascular injury response. Hsp90 expression is up-regulated in injured arteries and colocalizes with the apoptosis inhibitor, survivin, in vascular smooth muscle cell in vitro and in vivo. By using a proteomic approach, we demonstrate that targeted disruption of mitochondrial Hsp90 chaperone function in vascular smooth muscle cell leads to loss of cytoprotective client proteins (survivin and Akt), induces mitochondrial permeability, and leads to apoptotic cell death. Hsp90 targeting using a cell-permeable peptidomimetic agent resulted in marked attenuation of neointimal lesions in a murine arterial injury model. These findings suggest that mitochondrial Hsp90 chaperone function is an important regulator of intimal hyperplasia and may have implications for molecular strategies that promote the long-term patency of cardiovascular interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。