Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction

通过一锅反应合成叔胺稳定的硼酸盐-PVA 粒子在生理 pH 下进行葡萄糖响应性基因传递

阅读:6
作者:Mangesh Morey, Akshay Srivastava, Abhay Pandit

Abstract

We report a physiologically stable and cytocompatible glucose-responsive nonviral gene delivery system made up of boronate functionalized polymeric material. Herein, we utilize boronate cis-diol interactions to develop a glucose-responsive submicron particle (SMP) system. The stability of the boronate interaction at a physiological pH was achieved by copolymerization of dimethyl aminoethyl methacrylate (DMAEMA) with acrylamidophenylboronic acid (AAPBA) and the formation of a complex with polyvinylalcohol (PVA) which is governed by cis-diol interactions. The shift in hydrodynamic diameter of SMPs was observed and correlated with increasing glucose concentrations at a physiological pH. Optimal transfection was observed for a 5 µg dose of the gaussia luciferase reporter gene in NIH3T3 cells without any adverse effect on cellular viability. The destabilization of the AAPBA-PVA complex by interacting with glucose allowed the release of encapsulated bovine serum albumin (BSA) in a glucose-responsive manner. In total, 95% of BSA was released from SMPs at a 50 mM glucose concentration after 72 h. A two-fold increase in transfection was observed in 50 mM glucose compared to that of 10 mM glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。