Discovery and Validation of a Novel Step Catalyzed by OsF3H in the Flavonoid Biosynthesis Pathway

发现并验证黄酮类化合物生物合成途径中 OsF3H 催化的新步骤

阅读:5
作者:Rahmatullah Jan, Sajjad Asaf, Sanjita Paudel, Lubna, Sangkyu Lee, Kyung-Min Kim

Abstract

Kaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system. In this study, biosynthetic pathways for kaempferol and quercetin were constructed in Saccharomyces cerevisiae using naringenin as a substrate. OsF3H was cloned into pRS42K yeast episomal plasmid (YEp) vector and the activity of the target gene was analyzed in engineered and empty strains. We confirmed a novel step of kaempferol and quercetin biosynthesis directly from naringenin, catalyzed by the rice flavanone 3-hydroxylase (F3H). The results were confirmed through thin layer chromatography (TLC) followed by western blotting, nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry LCMS-MS. TLC showed positive results when comparing both compounds extracted from the engineered strain with the standard reference. Western blotting confirmed the lack of OsF3H activity in empty strains and confirmed high OsF3H expression in engineered strains. NMR spectroscopy confirmed only quercetin, while LCMS-MS results revealed that F3H is responsible for the conversion of naringenin to both kaempferol and quercetin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。