Development of Brain-Derived Bioscaffolds for Neural Progenitor Cell Culture

用于神经祖细胞培养的脑源性生物支架的开发

阅读:8
作者:Julia C Terek, Matthew O Hebb, Lauren E Flynn

Abstract

Biomaterials derived from brain extracellular matrix (ECM) have the potential to promote neural tissue regeneration by providing instructive cues that can direct cell survival, proliferation, and differentiation. This study focused on the development and characterization of microcarriers derived from decellularized brain tissue (DBT) as a platform for neural progenitor cell culture. First, a novel detergent-free decellularization protocol was established that effectively reduced the cellular content of porcine and rat brains, with a >97% decrease in the dsDNA content, while preserving collagens (COLs) and glycosaminoglycans (GAGs). Next, electrospraying methods were applied to generate ECM-derived microcarriers incorporating the porcine DBT that were stable without chemical cross-linking, along with control microcarriers fabricated from commercially sourced bovine tendon COL. The DBT microcarriers were structurally and biomechanically similar to the COL microcarriers, but compositionally distinct, containing a broader range of COL types and higher sulfated GAG content. Finally, we compared the growth, phenotype, and neurotrophic factor gene expression levels of rat brain-derived progenitor cells (BDPCs) cultured on the DBT or COL microcarriers within spinner flask bioreactors over 2 weeks. Both microcarrier types supported BDPC attachment and expansion, with immunofluorescence staining results suggesting that the culture conditions promoted BDPC differentiation toward the oligodendrocyte lineage, which may be favorable for cell therapies targeting remyelination. Overall, our findings support the further investigation of the ECM-derived microcarriers as a platform for neural cell derivation for applications in regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。