Identification of protein interfaces between α-synuclein, the principal component of Lewy bodies in Parkinson disease, and the molecular chaperones human Hsc70 and the yeast Ssa1p

识别帕金森病路易体的主要成分 α-突触核蛋白与分子伴侣人类 Hsc70 和酵母 Ssa1p 之间的蛋白质界面

阅读:5
作者:Virginie Redeker, Samantha Pemberton, Willy Bienvenut, Luc Bousset, Ronald Melki

Abstract

Fibrillar α-synuclein (α-Syn) is the principal component of Lewy bodies, which are evident in individuals affected by Parkinson disease (PD). This neuropathologic form of α-Syn plays a central role in PD progression as it has been shown to propagate between neurons. Tools that interfere with α-Syn assembly or change the physicochemical properties of the fibrils have potential therapeutic properties as they may be sufficient to interfere with and/or halt cell-to-cell transmission and the systematic spread of α-Syn assemblies within the central nervous system. Vertebrate molecular chaperones from the constitutive/heat-inducible heat shock protein 70 (Hsc/p70) family have been shown to hinder the assembly of soluble α-Syn into fibrils and to bind to the fibrils and very significantly reduce their toxicity. To understand how Hsc70 family members sequester soluble α-Syn, we set up experiments to identify the molecular chaperone-α-Syn surface interfaces. We cross-linked human Hsc70 and its yeast homologue Ssa1p and α-Syn using a chemical cross-linker and mapped the Hsc70- and Ssa1p-α-Syn interface. We show that the client binding domain of Hsc70 and Ssa1p binds two regions within α-Syn similar to a tweezer, with the first spanning residues 10-45 and the second spanning residues 97-102. Our findings define what is necessary and sufficient for engineering Hsc70- and Ssa1p-derived polypeptide with minichaperone properties with a potential as therapeutic agents in Parkinson disease through their ability to affect α-Syn assembly and/or toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。