Role of human cytomegalovirus in the proliferation and invasion of extravillous cytotrophoblasts isolated from early placentae

人类巨细胞病毒对早期胎盘绒毛外滋养细胞增殖和侵袭的影响

阅读:5
作者:Tao Liu, Xiaofei Zheng, Qin Li, Juanjuan Chen, Zongzhi Yin, Juan Xiao, Dandan Zhang, Wei Li, Yuan Qiao, Suhua Chen

Aim

We investigated the role of human cytomegalovirus (HCMV) and its mechanism in extravillous cytotrophoblast (EVT) proliferation and invasion in vitro.

Conclusions

HCMV may act on multiple steps of the TGF-β/Smad signaling pathway to impede EVT proliferation and invasion.

Methods

Differential enzymatic digestion combined with gradient centrifugation, was used to isolate primary EVT from human chorionic villi collected from early placentae of healthy pregnant women. HCMV infection was determined by immunofluorescence staining of HCMVpp65 antigen expression. An MTT assay was used to examine the role of HCMV in the proliferation of EVT. Quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemical staining and Western blots were carried out in a control group (EVT) and a virus group (EVT+HCMV) to examine the expression of major genes and protein in TGF-β/Smad signaling pathways in EVT 48 h after inoculation with HCMV. An in vitro cell invasion assay was performed to analyze the influence of HCMV on EVT invasion.

Results

HCMV significantly inhibited the proliferation of EVT 48 h after viral infection (P < 0.05). The expression of TGF-β1, Smad1, Smad2, Smad3, Smad4, and Smad5 genes was significantly increased (P < 0.05), but that of TGF-β2, TGF-β3, TGFβRI, TGFβRII, Smad7, MMP2, and MMP9 was significantly decreased in the virus group 48 h after HCMV infection (P < 0.05). Smad7, MMP-2 and MMP-9 protein levels were significantly decreased and the TGF-β1 protein level was significantly increased in infected EVT (all P < 0.05). Conclusions: HCMV may act on multiple steps of the TGF-β/Smad signaling pathway to impede EVT proliferation and invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。