Facilitation of axon outgrowth via a Wnt5a-CaMKK-CaMKIα pathway during neuronal polarization

在神经元极化过程中通过 Wnt5a-CaMKK-CaMKIα 通路促进轴突生长

阅读:6
作者:Shin-ichiro Horigane, Natsumi Ageta-Ishihara, Satoshi Kamijo, Hajime Fujii, Michiko Okamura, Makoto Kinoshita, Sayaka Takemoto-Kimura, Haruhiko Bito

Background

Wnt5a, originally identified as a guidance cue for commissural axons, activates a non-canonical pathway critical for cortical axonal morphogenesis. The molecular signaling cascade underlying this event remains obscure.

Conclusions

This study suggests that Wnt5a activates Ca(2+) signaling during a neuronal morphogenetic time window when axon outgrowth is critically facilitated. Furthermore, the CaMKK-CaMKIα cascade is required for the axonal growth effect of Wnt5a during neuronal polarization.

Results

Through Ca(2+) imaging in acute embryonic cortical slices, we tested if radially migrating cortical excitatory neurons that already bore primitive axons were sensitive to Wnt5a. While Wnt5a only evoked brief Ca(2+) transients in immature neurons present in the intermediate zone (IZ), Wnt5a-induced Ca(2+) oscillations were sustained in neurons that migrated out to the cortical plate (CP). We wondered whether this early Wnt5a-Ca(2+) signaling during neuronal polarization has a morphogenetic consequence. During transition from round to polarized shape, Wnt5a administration to immature cultured cortical neurons specifically promoted axonal, but not dendritic, outgrowth. Pharmacological and genetic inhibition of the CaMKK-CaMKIα pathway abolished Wnt5a-induced axonal elongation, and rescue of CaMKIα in CaMKIα-knockdown neurons restored Wnt5a-mediated axon outgrowth. Conclusions: This study suggests that Wnt5a activates Ca(2+) signaling during a neuronal morphogenetic time window when axon outgrowth is critically facilitated. Furthermore, the CaMKK-CaMKIα cascade is required for the axonal growth effect of Wnt5a during neuronal polarization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。