Rapid Enrichment of a Native Multipass Transmembrane Protein via Cell Membrane Electrophoresis through Buffer pH and Ionic Strength Adjustment

通过调节缓冲液 pH 值和离子强度,利用细胞膜电泳快速富集天然多跨膜蛋白

阅读:10
作者:Tzu-Tzu Liu, Sin-Han Huang, Ling Chao

Abstract

Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。