Remote ischaemic perconditioning reduces the infarct volume and improves the neurological function of acute ischaemic stroke partially through the miR-153-5p/TLR4/p65/IkBa signalling pathway

远程缺血预处理部分通过 miR-153-5p/TLR4/p65/IkBa 信号通路减少急性缺血性卒中的梗塞体积并改善神经功能

阅读:9
作者:Hao Zha, Wei Miao, Wei Rong, Aimei Wang, Weiqi Jiang, Rui Liu, Lanqi Liu, Ying Wang

Abstract

Remote ischemic perconditioning (RIPerC) could improve neuronal damage and inhibit inflammation and apoptosis. We conducted an in-depth exploration of the protective mechanism of RIPerC in cerebral ischaemia injury. In this study, a middle cerebral artery occlusion (MCAO) mouse model was built. According to whether to undergo RIPerC treatment and the duration of cerebral infarction, mice were divided into 5 groups: Sham group, MCAO 3.0 h group, MCAO 4.5 h group, MCAO 3.0 h + RIPerC group, and MCAO 4.5 h + RIPerC group. Overexpressed or silenced miR-153-5p was transfected into the cells to analyse the effects of oxygen-glucose deprivation (OGD) treatment on Neuro-2a cell viability, apoptosis, and related gene expressions by performing quantitative real-time polymerase chain reaction (qRT-PCR), MTT assay, flow cytometry, and Western blot. Bioinformatics analysis, qRT-PCR, dual-luciferase experiment, and RNA immunoprecipitation (RIP) were used to screen and verify the miRNA and downstream mRNA-targeted Toll-like receptor 4 (TLR4). The rescue test further verified the effects of the above target genes and miR-153-5p on the apoptosis of OGD-injured cells, apoptosis-related proteins, and the p65/IkBa pathway. The plasma levels of miR-153-5p in 68 patients with ischaemic stroke were detected within 6 hours of onset, and the patients were followed up for 3 months. We found that, in in vivo studies, RIPerC treatment inhibits cerebral infarction volume and neurological damage, and promotes the expression of miR-153-5p in the MCAO animal model. The expression of miR-153-5p in OGD cells was inhibited, and its upregulation protected Neuro-2a cells. TLR4 was predicted to be the target gene of miR-153-5p and could offset the effect of miR-153-5p mimic on OGD cell protection after up-regulating TLR4. TLR4 overexpression promoted the activation of OGD on the p65/IkBa pathway. Compared with the high plasma miR-153-5p group, the 3-month overall survival rate of patients with ischaemic stroke in the low plasma miR-153-5p group was significantly lower (c2 = 5.095, p = 0.024). In conclusion, RIPerC intervention inhibits the damage caused by cerebral ischaemia partially through the miR-153-5p/TLR4/p65/IkBa signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。