miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression

miR-203 通过控制磷脂酶 A2 活化蛋白表达来调节切开后的伤害性敏化

阅读:5
作者:Yuan Sun, Xiang-Qi Li, Peyman Sahbaie, Xiao-You Shi, Wen-Wu Li, De-Yong Liang, J David Clark

Background

After incision keratinocytes in the epidermis become activated to produce a range of pain-related mediators. microRNA 203 (miR-203) is known to be involved in keratinocyte growth, differentiation, and skin inflammation. We hypothesized that one or more of these mediators might be under the control of miR-203.

Conclusions

miR-203 may regulate expression of the novel nociceptive mediator PLAA after incision. Furthermore, the regulation of miR-203 and PLAA levels is reliant upon intact substance P signaling.

Methods

The expression of miR-203 and its target gene, phospholipase A2 activating protein (PLAA), were examined after hind paw incision in mice. We investigated the local effect of intraplantar PLAA peptide injection in normal mice and the effects of a selective secretory phospholipase A2 inhibitor (HK064) on PLAA or incision-induced mechanical allodynia. Last, we investigated the role of substance P signaling in regulating miR-203 and PLAA expression in vitro and in vivo.

Results

Levels of miR-203 were strongly down-regulated in keratinocytes after incision. Informatics-based approaches identified PLAA as a likely candidate for regulation by miR-203. PLAA caused mechanical allodynia and conditioned place aversion but not thermal sensitization. HK064 reduced mechanical allodynia after incision and after intraplantar injection of PLAA. Using preprotachykinin gene knockout mice or with neurokinin-1 selective antagonist LY303870 treatment, we observed that substance P-mediated signaling was also required for miR-203 and PLAA regulation after incision. Finally, using the rat epidermal keratinocyte cell line, we observed that a miR-203 mimic molecule could block the substance P-induced increase in PLAA expression observed under control conditions. Conclusions: miR-203 may regulate expression of the novel nociceptive mediator PLAA after incision. Furthermore, the regulation of miR-203 and PLAA levels is reliant upon intact substance P signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。