Nitrogen Permease Regulator-Like-2 Exhibited Anti-Tumor Effects And Enhanced The Sensitivity Of Colorectal Cancer Cells To Oxaliplatin And 5-Fluorouracil

氮通透酶调节剂样2具有抗肿瘤作用并增强结肠直肠癌细胞对奥沙利铂和5-氟尿嘧啶的敏感性

阅读:7
作者:Aiyun Liu, Jiutao Qiao, Liyuan He, Zhangmeng Liu, Jing Chen, Fenghua Pei, Yaju Du

Background

Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Our previous study revealed that nitrogen permease regulator-like-2 (NPRL2), a promising anti-tumor gene, was downregulated at both the blood and tissue levels in CRC patients compared with that in healthy individuals.

Conclusion

Our present work demonstrated that NPRL2 exhibited anti-tumor effects and enhanced the sensitivities of CRC cells to L-OHP and 5-FU through the P-gp and MRP1 pathways.

Methods

Herein, we constructed NPRL2 overexpression lentivirus vectors and transfected them into HT29 cells. The transfected cells were inoculated subcutaneously into nude mice. Tumor growth, pathology, apoptosis, and the protein expression of caspase-3, caspase-7, Bax, Bcl-2, and phosphorylated protein kinase B (p-Akt) were evaluated. To further explore whether NPRL2 could reduce drug resistance of CRC cells against oxaliplatin (L-OHP) and 5-fluorouracil (5-FU), we constructed a tumor model using HT29 cells. The tumor model was treated with lentiviral particles assembled with vectors encoding NPRL2 and exposed to L-OHP and 5-FU. Tumor growth, pathology, apoptosis, and the protein expression of caspase-3, caspase-7, Bax, Bcl-2, p-Akt, P-glycoprotein (P-gp), and multidrug resistance protein 1 (MRP1) were evaluated.

Purpose

This study aims to explore the role of NPRL2 in CRC.

Results

The results indicated that in the in vivo CRC xenograft model, NPRL2 reduced the tumor volume and weight and enhanced apoptosis. Our results also confirmed that NPRL2 enhanced the sensitivity of CRC cells to L-OHP and 5-FU. Our studies further demonstrated that NPRL2 exerted anti-tumor and anti-drug resistance effects through the caspase-3, caspase-7, Bax, Bcl-2, Akt, P-gp, and MRP1 pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。