Evaluation of targeting errors in ultrasound-assisted radiotherapy

超声辅助放射治疗中的靶向误差评估

阅读:8
作者:Michael Wang, Robert Rohling, Cheryl Duzenli, Brenda Clark, Neculai Archip

Abstract

A method for validating the start-to-end accuracy of a 3-D ultrasound (US)-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3-D US guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3-D US guidance, and finally delivery of radiation, to be evaluated. The 3-D US patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3-D US scans of the target anatomy acquired using a dedicated 3-D ultrasound probe during both the simulation and treatment sessions, automatic 3-D US-to-US registration and use of infrared LED (IRED) markers of the optical position-sensing system for registering simulation computed tomography to US data. The mean target localization accuracy of this system was 2.5 mm for four target locations inside the phantom, compared with 1.6 mm obtained using the conventional patient positioning method of laser alignment. Because the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3-D US-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1 mm in magnitude.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。