An integrated network pharmacology and transcriptomic method to explore the mechanism of the total Rhizoma Coptidis alkaloids in improving diabetic nephropathy

整合网络药理学和转录组学方法探讨黄连总碱改善糖尿病肾病的机制

阅读:8
作者:Yaping Xiao, Yan Liu, Zhihui Lai, Jieyao Huang, Chunming Li, Yaru Zhang, Xiaobao Gong, Jianling Deng, Xiaoli Ye, Xuegang Li

Aim of the study

To verify the effect of TRCA in the treatment of DN and clarify the molecular mechanism by combining network pharmacology and transcriptomic. Materials and

Conclusions

In summary, the renal protection of TRCA on DN may be related to activation of the AGEs-RAGE-TGFβ/Smad2 and PI3K-Akt signaling pathways.

Methods

Eight-week-old db/db mice were orally administered with normal saline, 100 mg/kg TRCA, and 100 mg/kg berberine (BBR) for 8 weeks. Serum, urine, and kidney samples were collected to measure biological indicators and observe renal pathological changes. Then, the molecular mechanism of TRCA improving DN was predicted by the network pharmacology. Briefly, the main active alkaloids components of TRCA and their targets were collected from the database, as well as the potential targets of DN. Using the Cytoscape software to visualize the interactive network diagram of "ingredient-target". The GO and KEGG pathways enrichment analysis of the core targets were executed by Metascape. Furthermore, RNA-seq was used to get whole transcriptomes from the kidneys of db/m mice, db/db mice, and db/db mice treated with TRCA. The key differentially expressed genes (DEGs) were gathered to conduct the GO and KEGG pathways enrichment analysis. Finally, the potential pathways were validated by western blotting.

Results

The administration of BBR or TRCA for 8 weeks significantly reduced the fasting blood glucose (FBG) and body weight of db/db mice, and improved their renal function and lipid disorders. According to H&E, PAS, and Masson staining, both the BBR and TRCA could alleviate renal damage and fibrosis. The Venn diagram had shown that seven alkaloids ingredients collected from TRCA regulated 85 common targets merged in the TRCA and DN. The results of RNA-seq indicated that there are 121 potential targets for TRCA treatment on DN. Intriguingly, both the AGE-RAGE signaling pathway and the PI3k-Akt signaling pathway were included in the KEGG pathways enrichment results of network pharmacology and RNA-seq. Moreover, we verified that TRCA down-regulated the expression of related proteins in the AGEs-RAGE-TGFβ/Smad2 and PI3K-Akt pathways in the kidney tissues. Conclusions: In summary, the renal protection of TRCA on DN may be related to activation of the AGEs-RAGE-TGFβ/Smad2 and PI3K-Akt signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。