Identification and characterization of L- and D-lactate-inducible systems from Escherichia coli MG1655, Cupriavidus necator H16 and Pseudomonas species

大肠杆菌 MG1655、Cupriavidus necator H16 和假单胞菌属中 L 和 D 乳酸诱导系统的鉴定和表征

阅读:6
作者:Ernesta Augustiniene, Naglis Malys

Abstract

Lactic acid is an important platform chemical used for the production of various compounds including polylactic acid (PLA). Optically pure L- and D-lactic acids are required to obtain high quality PLA. To advance the development and selection of microbial strains for improved production of lactic acid enantiomers, a high-throughput screening, dynamic pathway control, or real-time monitoring are often applied. Inducible gene expression systems and their application in the genetically encoded biosensors contribute to the development of these techniques and are important devices for the advancement of lactic acid biotechnology. Here, we identify and characterize eleven lactate-inducible systems from Escherichia coli, Cupriavidus necator, and Pseudomonas spp. The specificity and dynamics of these systems in response to L- and D-lactate, or structurally similar compounds are investigated. We demonstrate that the inducible systems EcLldR/PlldP and CnGntR/PH16_RS19190 respond only to the L-lactate, exhibiting approximately 19- and 24-fold induction, respectively. Despite neither of the examined bacteria possess the D-lactate-specific inducible system, the PaPdhR/PlldP and PfPdhR/PlldP are induced approximately 37- and 366-fold, respectively, by D-lactate and can be used for developing biosensor with improved specificity. The findings of this study provide an insight into understanding of L- and D-lactate-inducible systems that can be employed as sensing and tuneable devices in synthetic biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。