Fast and Sustained Axonal Growth by BDNF Released from Chitosan Microspheres

壳聚糖微球释放的 BDNF 促进轴突快速持续生长

阅读:5
作者:Inmaculada Aranaz, Niuris Acosta, Julia Revuelta, Agatha Bastida, Víctor Gómez-Casado, Concepción Civera, Leoncio Garrido, Eduardo García-Junceda, Ángeles Heras, Andrés R Alcántara, Alfonso Fernández-Mayoralas, Ernesto Doncel-Pérez

Abstract

Brain-derived neurotrophic factor (BDNF) regulates dendritic branching and dendritic spine morphology, as well as synaptic plasticity and long-term potentiation. Consequently, BDNF deficiency has been associated with some neurological disorders such as Alzheimer's, Parkinson's or Huntington's diseases. In contrast, elevated BDNF levels correlate with recovery after traumatic central nervous system (CNS) injuries. The utility of BDNF as a therapeutic agent is limited by its short half-life in a pathological microenvironment and its low efficacy caused by unwanted consumption of non-neuronal cells or inappropriate dosing. Here, we tested the activity of chitosan microsphere-encapsulated BDNF to prevent clearance and prolong the efficacy of this neurotrophin. Neuritic growth activity of BDNF release from chitosan microspheres was observed in the PC12 rat pheochromocytoma cell line, which is dependent on neurotrophins to differentiate via the neurotrophin receptor (NTR). We obtained a rapid and sustained increase in neuritic out-growth of cells treated with BDNF-loaded chitosan microspheres over control cells (p < 0.001). The average of neuritic out-growth velocity was three times higher in the BDNF-loaded chitosan microspheres than in the free BDNF. We conclude that the slow release of BDNF from chitosan microspheres enhances signaling through NTR and promotes axonal growth in neurons, which could constitute an important therapeutic agent in neurodegenerative diseases and CNS lesions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。