Genomic pedigree reconstruction identifies predictors of mating and reproductive success in an invasive vertebrate

基因组谱系重建确定了入侵脊椎动物交配和生殖成功的预测因素

阅读:7
作者:Brenna A Levine, Marlis R Douglas, Amy A Yackel Adams, Björn Lardner, Robert N Reed, Julie A Savidge, Michael E Douglas

Abstract

The persistence of an invasive species is influenced by its reproductive ecology, and a successful control program must operate on this premise. However, the reproductive ecology of invasive species may be enigmatic due to factors that also limit their management, such as cryptic coloration and behavior. We explored the mating and reproductive ecology of the invasive Brown Treesnake (BTS: Boiga irregularis) by reconstructing a multigenerational genomic pedigree based on 654 single nucleotide polymorphisms for a geographically closed population established in 2004 on Guam (N = 426). The pedigree allowed annual estimates of individual mating and reproductive success to be inferred for snakes in the study population over a 14-year period. We then employed generalized linear mixed models to gauge how well phenotypic and genomic data could predict sex-specific annual mating and reproductive success. Average snout-vent length (SVL), average body condition index (BCI), and trappability were significantly related to annual mating success for males, with average SVL also related to annual mating success for females. Male and female annual reproductive success was positively affected by SVL, BCI, and trappability. Surprisingly, the degree to which individuals were inbred had no effect on annual mating or reproductive success. When juxtaposed with current control methods, these results indicate that baited traps, a common interdiction tool, may target fecund BTS in some regards but not others. Our study emphasizes the importance of reproductive ecology as a focus for improving BTS control and promotes genomic pedigree reconstruction for such an endeavor in this invasive species and others.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。