ChREBP-β/TXNIP aggravates frucose-induced renal injury through triggering ferroptosis of renal tubular epithelial cells

ChREBP-β/TXNIP通过引发肾小管上皮细胞铁死亡加重果糖诱导的肾损伤

阅读:12
作者:Hang Guo, Ting Fang, Ying Cheng, Ting Li, Jing-Ru Qu, Chao-Fei Xu, Xiao-Qing Deng, Bei Sun, Li-Ming Chen

Abstract

High fructose intake is an essential risk factor for kidney injury. However, the specific mechanism underlying high fructose-induced kidney injury remains unclarified. Carbohydrate response element-binding protein (ChREBP) is a key transcriptional activator that regulates fructose metabolism. ChREBP-β exhibits sustained activity due to the lack of a low glucose inhibitory domain, and is thus described as the active form of ChREBP. In this study, a mouse model with specific overexpression of ChREBP-β in the renal tubule was established by using the Cre/LoxP method. Quantitative proteomic analysis and experimental verification results suggest that ChREP-β overexpression leads to ferroptosis of renal tubular epithelial cells and kidney injury. ChREPB-β promotes the gene transcription of thioredoxin-interacting protein (TXNIP) and thereby increases its expression level. TXNIP is associated with activation of ferroptosis. TXNIP can initiate ferroptosis and eventually contribute to high fructose-induced renal tubular epithelial cell damage. Through down-regulating ChREBP-β, metformin can inhibit gene transcription of TXNIP, attenuate high fructose-induced ferroptosis in renal tubular epithelial cells, and alleviate kidney injury. In conclusion, ChREBP-β mediates fructose-induced ferroptosis of renal tubular epithelial cells, and metformin with a ChREBP-β inhibitory effect may be a potential treatment for ferroptosis of renal tubular epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。