Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression

Kv4.2 钾通道分离至突触外区域并影响突触内 NMDA 受体 NR2B 亚基表达

阅读:10
作者:Walter A Kaufmann, Ko Matsui, Andreas Jeromin, Jeanne M Nerbonne, Francesco Ferraguti

Abstract

Neurons of the intercalated cell clusters (ITCs) represent an important relay site for information flow within amygdala nuclei. These neurons receive mainly glutamatergic inputs from the basolateral amygdala at their dendritic domains and provide feed-forward inhibition to the central nucleus. Voltage-gated potassium channels type-4.2 (Kv4.2) are main players in dendritic signal processing and integration providing a key component of the A currents. In this study, the subcellular localization and distribution of the Kv4.2 was studied in ITC neurons by means of light- and electron microscopy, and compared to other types of central principal neurons. Several ultrastructural immunolocalization techniques were applied including pre-embedding techniques and, most importantly, SDS-digested freeze-fracture replica labeling. We found Kv4.2 densely expressed in somato-dendritic domains of ITC neurons where they show a differential distribution pattern as revealed by nearest neighbor analysis. Comparing ITC neurons with hippocampal pyramidal and cerebellar granule cells, a cell type- and domain-dependent organization in Kv4.2 distribution was observed. Kv4.2 subunits were localized to extrasynaptic sites where they were found to influence intrasynaptic NMDA receptor subunit expression. In samples of Kv4.2 knockout mice, the frequency of NR1-positive synapses containing the NR2B subunit was significantly increased. This indicates a strong, yet indirect effect of Kv4.2 on the synaptic content of NMDA receptor subtypes, and a likely role in synaptic plasticity at ITC neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。