AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos

AHR 介导的氧化应激导致三氯乙烯对斑马鱼胚胎产生心脏发育毒性

阅读:5
作者:Hongmei Jin, Cheng Ji, Fei Ren, Stanley Aniagu, Jian Tong, Yan Jiang, Tao Chen

Abstract

Trichloroethylene (TCE), a widely used chlorinated solvent, is a common environmental pollutant. Current evidence shows that TCE could induce heart defects during embryonic development, but the underlining mechanism(s) remain unclear. Since activation of the aryl hydrocarbon receptor (AHR) could induce oxidative stress, we hypothesized that AHR-mediated oxidative stress may play a role in the cardiac developmental toxicity of TCE. In this study, we found that the reactive oxygen species (ROS) scavenger, N-Acetyl-L-cysteine (NAC), and AHR inhibitors, CH223191 (CH) and StemRegenin 1, significantly counteracted the TCE-induced heart malformations in zebrafish embryos. Moreover, both CH and NAC suppressed TCE-induced ROS and 8-OHdG (8-hydroxy-2' -deoxyguanosine). TCE did not affect ahr2 and cyp1a expression, but increased cyp1b1 expression, which was restored by CH supplementation. CH also attenuated the TCE-induced mRNA expression changes of Nrf2 signalling genes (nrf2b, gstp2, sod2, ho1, nqo1) and cardiac differentiation genes (gata4, hand2, c-fos, sox9b). In addition, the TCE enhanced SOD activity was attenuated by CH. Morpholino knockdown confirmed that AHR mediated the TCE-induced ROS and 8-OHdG generation in the heart of zebrafish embryos. In conclusion, our results suggest that AHR mediates TCE-induced oxidative stress, leading to DNA damage and heart malformations in zebrafish embryos.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。