Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats

可卡因和苯丙胺调节转录本是调节胆囊收缩素和瘦素对大鼠短期饱腹感作用的神经递质

阅读:6
作者:Andrea Heldsinger, Yuanxu Lu, Shi-Yi Zhou, Xiaoyin Wu, Gintautas Grabauskas, Il Song, Chung Owyang

Abstract

Vagal CCK-A receptors (CCKARs) and leptin receptors (LRbs) interact synergistically to mediate short-term satiety. Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed by vagal afferent neurons. We sought to demonstrate that this neurotransmitter regulates CCK and leptin actions on short-term satiety. We also examined the signal transduction pathways responsible for mediating the CART release from the nodose ganglia (NG). ELISA studies coupled with gene silencing of NG neurons by RNA interference elucidated intracellular signaling pathways responsible for CCK/leptin-stimulated CART release. Feeding studies followed by gene silencing of CART in NG established the role of CART in mediating short-term satiety. Immunohistochemistry was performed on rat NG neurons to confirm colocalization of CCKARs and LRbs; 63% of these neurons contained CART. Coadministration of CCK-8 and leptin caused a 2.2-fold increase in CART release that was inhibited by CCK-OPE, a low-affinity CCKAR antagonist. Transfection of cultured NG neurons with steroid receptor coactivator (SRC) or phosphatidylinositol 3-kinase (PI3K) small-interfering RNA (siRNA) or STAT3 lentiviral short hairpin RNA inhibited CCK/leptin-stimulated CART release. Silencing the expression of the EGR-1 gene inhibited the CCK/leptin-stimulated CART release but had no effect on CCK/leptin-stimulated neuronal firing. Electroporation of NG with CART siRNA inhibited CCK/leptin stimulated c-Fos expression in rat hypothalamus. Feeding studies following electroporation of the NG with CART or STAT3 siRNA abolished the effects of CCK/leptin on short-term satiety. We conclude that the synergistic interaction of low-affinity vagal CCKARs and LRbs mediates CART release from the NG, and CART is the principal neurotransmitter mediating short-term satiety. CART release from the NG involves interaction between CCK/SRC/PI3K cascades and leptin/JAK2/PI3K/STAT3 signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。