Physicochemical and Functional Properties and Storage Stability of Chitosan-Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts

含姜黄和木槿提取物的胶束纳米/微结构壳聚糖-淀粉膜的物理化学和功能特性以及储存稳定性

阅读:7
作者:Liliana Woszczak, Karen Khachatryan, Magdalena Krystyjan, Teresa Witczak, Mariusz Witczak, Dorota Gałkowska, Małgorzata Makarewicz, Gohar Khachatryan

Abstract

The dynamic development of the food industry and the growing interest of consumers in innovative solutions that increase the comfort and quality of life push the industry towards seeking pioneering solutions in the field of food packaging. Intelligent and active packaging, which affects the quality and durability of food products and allows one to determine their freshness, is still a modern concept. The aim of our study was to obtain two types of films based on chitosan and starch with micellar nanostructures containing extracts from turmeric rhizomes and hibiscus flowers. The presence of spherical nanostructures was confirmed using a scanning electron microscope. The structural and optical properties of the obtained composites were characterised by Fourier-transform infrared (FTIR), UltraViolet-Visible (UV-VIS), and photoluminescence (PL) spectroscopy. Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures with a size of about 800 nm in the obtained biocomposites. The presence of nano-/microstructures containing extracts affected the mechanical properties of the composites: it weakened the strength of the films and improved their elongation at break (EAB). Films with nano-/microparticles were characterised by a higher water content compared to the control sample and lower solubility, and they showed stronger hydrophilic properties. Preliminary storage tests showed that the obtained biocomposites are sensitive to changes occurring during the storage of products such as cheese or fish. In addition, it was found that the film with the addition of turmeric extract inhibited the growth of microorganisms during storage. The results suggest that the obtained bionanocomposites can be used as active and/or intelligent materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。