Developmental and degenerative cardiac defects in the Taiwanese mouse model of severe spinal muscular atrophy

台湾严重脊髓性肌萎缩症小鼠模型的发育和退行性心脏缺陷

阅读:5
作者:Gillian K Maxwell, Eva Szunyogova, Hannah K Shorrock, Thomas H Gillingwater, Simon H Parson

Abstract

Spinal muscular atrophy (SMA), an autosomal recessive disease caused by a decrease in levels of the survival motor neuron (SMN) protein, is the most common genetic cause of infant mortality. Although neuromuscular pathology is the most severe feature of SMA, other organs and tissues, including the heart, are also known to be affected in both patients and animal models. Here, we provide new insights into changes occurring in the heart, predominantly at pre- and early symptomatic ages, in the Taiwanese mouse model of severe SMA. Thinning of the interventricular septum and dilation of the ventricles occurred at pre- and early symptomatic ages. However, the left ventricular wall was significantly thinner in SMA mice from birth, occurring prior to any overt neuromuscular symptoms. Alterations in collagen IV protein from birth indicated changes to the basement membrane and contributed to the abnormal arrangement of cardiomyocytes in SMA hearts. This raises the possibility that developmental defects, occurring prenatally, may contribute to cardiac pathology in SMA. In addition, cardiomyocytes in SMA hearts exhibited oxidative stress at pre-symptomatic ages and increased apoptosis during early symptomatic stages of disease. Heart microvasculature was similarly decreased at an early symptomatic age, likely contributing to the oxidative stress and apoptosis phenotypes observed. Finally, an increased incidence of blood retention in SMA hearts post-fixation suggests the likelihood of functional defects, resulting in blood pooling. These pathologies mirror dilated cardiomyopathy, with clear consequences for heart function that would likely contribute to potential heart failure. Our findings add significant additional experimental evidence in support of the requirement to develop systemic therapies for SMA capable of treating non-neuromuscular pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。